Відкрити меню

вправа 5.60 гдз 10 клас геометрія Істер 2018

 
Вправа 5.60
Площина β паралельна площині трикутника KLM. Світло, що виходить з точки Q, відкидає на площину β тінь K1L1M1 від трикутника KLM. Сторони трикутника K1L1M1 дорівнюють 12 см, 15 см, 9 см. Знайдіть:
1) сторони трикутника KLM, якщо QK : КК1 = 2 : 1;
2) площу трикутника KLM.

Умова:




Відповідь: вправа 5.60 гдз 10 клас геометрія Істер 2018 Нехай ΔKLM лежить в площині α.
QK ∩ β = К1, QM  β = М1, QL ∩ β = L1.
ΔК1М1L1 ⊂ β, QK : КК = 2 : 1, M1L1 = 12 см, К1М1 = 9 см, K1L1 = 15 см.
Знайдемо КМ, KL, ML, SΔKLM.
Розв'язання
Так як QK1 ∩ QM1 = Q, то проведемо площину γ через QK1 і QM1.
Площини KLM і β паралельні, тому γ ∩ (KLM) = КМ, γ ∩ β = К1М1.
За властивістю паралельних площин КМ║К1М1.
ΔQKM ~ ΔQK1M1 за двома кутами
(∠Q - спільний, ∠QKM = ∠QK1M1 - відповідні при паралельних прямих і січній).
Із подібності трикутників:
QK1/QK = K1M1/KM = QM1/QM
Нехай КК1 = х, тоді QK1 = QK + KK1 = 2x + x = 3x
3х/2х = К1М1/КМ; 3/2 = 9/КМ, звідки КМ = 6 (см).
Аналогічно можна довести, що ΔQML ~ ΔQM1L1, тоді
M1L1/ML = QM1/QM
M1L1/ML = 3/2; 12/ML = 3/2; ML = 8 (см)
Аналогічно можна довести, що ΔQKL ~ ΔQK1L1, тоді
K1L1/KL = QK1/QK
15/KL = 3/2; KL = 10 (см).
2) SΔKLM знайдемо за формулою Герона:
SΔ = √р • (р - а)(р - b)(р - с)
де р = 1/2(а + b + c)
р = 1/2(6 + 8 + 10) = 12
SΔ = 12 • 6 • 4 • 2 = 24 (см2).
Відповідь: 1) 6 см, 8 см, 10 см; 2) 24 см2
реклама

Рекомендую гдз (відповіді) для 10 класу

математика 10 клас Істер
математика Істер
10 клас
математика 10 клас Мерзляк
математика Мерзляк
10 клас
математика 10 клас Бевз
математика Бевз
10 клас
геометрія 10 клас Істер
геометрія Істер
10 клас
алгебра 10 клас Істер
алгебра Істер
10 клас
укр мова 10 клас Авраменко
укр мова Авраменко
10 клас
англ мова 10 клас Буренко
англ мова Буренко
10 клас
англ мова 10 клас Морська
англ мова Морська
10 клас
англ мова 10 клас Калініна
англ мова Калініна
10 клас
англ мова 10 клас Кучма
англ мова Кучма
10 клас
хімія 10 клас Савчин
хімія Савчин
10 клас