реклама

Вправа 168 алгебра Істер гдз 9 клас

Розв'язання:
  
Нехай швидкість потяга за розкладом дорівнює $x$ км/год.
1. Запишемо час руху:
- За розкладом: $$
\left.t_1=\frac{120}{x} \quad \text { (години }\right) .
$$ - 3 меншою швидкістю $x-10$ : $$
t_2=\frac{120}{x-10} \quad(\text { години })
$$ 2. Запишемо умову запізнення: Різниця часу становить 24 хвилини або $\frac{24}{60}=0,4$ години. $$
t_2-t_1=0,4
$$ 3. Підставимо значення: $$
\frac{120}{x-10}-\frac{120}{x}=0,4
$$ 4. Зведемо до спільного знаменника: $$
\frac{120 x-120(x-10)}{x(x-10)}=0,4
$$
Спрощуємо: $$
\frac{1200}{x(x-10)}=0,4
$$
Спрощуємо: $$
\frac{1200}{x(x-10)}=0,4
$$ 5. Помножимо на знаменник: $$
1200=0,4 x^2-4 x
$$ 6. Помножимо на 10 для усунення десяткових дробів: $$
12000=4 x^2-40 x
$$ 7. Перенесемо все в одну сторону: $$
4 x^2-40 x-12000=0
$$
Поділимо на 4: $$
x^2-10 x-3000=0
$$ 8. Знайдемо корені квадратного рівняння: За формулою: $$
\begin{gathered}
x=\frac{-(-10) \pm \sqrt{(-10)^2-4(1)(-3000)}}{2(1)} . \\
x=\frac{10 \pm \sqrt{100+12000}}{2} . \\
x=\frac{10 \pm \sqrt{12100}}{2} . \\
x=\frac{10 \pm 110}{2} . \\
x_1=\frac{120}{2}=60, \quad x_2=\frac{-100}{2}=-50 \quad \text { (не підходить). }
\end{gathered}
$$
Відповідь:
Потяг мав рухатися за розкладом зі швидкістю 60 км/год.