Вправа 219 алгебра Істер гдз 9 клас
$$
\begin{aligned}
& \left(\frac{1}{a^2-4 a+4}+\frac{1}{a^2-4}\right): \frac{2}{(a-2)^2} \\
& -\frac{a}{a+2}=\left(\frac{1}{(a-2)^2}+\frac{1}{(a-2)(a+2)}\right): \\
& : \frac{2}{(a-2)^2}-\frac{a}{a+2}=\left(\frac{a+2+u-2}{(a-2)^2(a+2)}\right): \\
& : \frac{2}{(a-2)^2}-\frac{a}{a+2}=\frac{2 a \cdot(a-2)^2}{(a-2)^2(a+2) \cdot 2} \\
& -\frac{a}{a+2}=\frac{a}{a+2}-\frac{a}{a+2}=0 .
\end{aligned}
$$
\begin{aligned}
& \left(\frac{1}{a^2-4 a+4}+\frac{1}{a^2-4}\right): \frac{2}{(a-2)^2} \\
& -\frac{a}{a+2}=\left(\frac{1}{(a-2)^2}+\frac{1}{(a-2)(a+2)}\right): \\
& : \frac{2}{(a-2)^2}-\frac{a}{a+2}=\left(\frac{a+2+u-2}{(a-2)^2(a+2)}\right): \\
& : \frac{2}{(a-2)^2}-\frac{a}{a+2}=\frac{2 a \cdot(a-2)^2}{(a-2)^2(a+2) \cdot 2} \\
& -\frac{a}{a+2}=\frac{a}{a+2}-\frac{a}{a+2}=0 .
\end{aligned}
$$