Відкрити меню

Розв'язання вправи № 2 (Повторення розділу 1) - ГДЗ Алгебра 8 клас (Істер)

Обкладинка книги ГДЗ Алгебра 8 клас Істер 2025

Розв'язання до підручника «Алгебра» для 8 класу.

Автор: О. С. Істер (2025).

→ Переглянути зміст до цього ГДЗ ←

Умова

Знайдіть область допустимих значень змінної у виразі:

1) $ c^2-3c $;     2) $ \frac{m+2}{m-8} $;     3) $ \frac{a}{a-9} + \frac{a-9}{a} $;     4) $\frac{3+c}{c(c-1)}$.

Короткий розв'язок

1) $ c^2-3c $: ОДЗ: $c$ — будь-яке число.

2) $ \frac{m+2}{m-8} $: $m-8 \neq 0 \Rightarrow m \neq 8$. ОДЗ: всі числа, крім $m=8$.

3) $ \frac{a}{a-9} + \frac{a-9}{a} $: $\begin{cases} a-9 \neq 0 \\ a \neq 0 \end{cases} \Rightarrow \begin{cases} a \neq 9 \\ a \neq 0 \end{cases}$. ОДЗ: всі числа, крім $a=0$ та $a=9$.

4) $ \frac{3+c}{c(c-1)} $: $c(c-1) \neq 0 \Rightarrow \begin{cases} c \neq 0 \\ c-1 \neq 0 \end{cases} \Rightarrow \begin{cases} c \neq 0 \\ c \neq 1 \end{cases}$. ОДЗ: всі числа, крім $c=0$ та $c=1$.

Детальний розв'язок

Ключ до розв'язання: Щоб знайти область допустимих значень (ОДЗ) раціонального виразу, необхідно визначити всі значення змінних, які перетворюють будь-який знаменник у виразі на нуль. Ці значення потрібно виключити з множини всіх дійсних чисел, оскільки ділення на нуль є невизначеною операцією. Детальніше в довіднику.

1) $c^2-3c$

Це цілий раціональний вираз, оскільки він не містить ділення на змінну. Для таких виразів обмежень на значення змінної немає.

Відповідь: Областю допустимих значень є всі дійсні числа.

2) $\frac{m+2}{m-8}$

Вираз є дробовим. Знаменник не може дорівнювати нулю.

$$m-8 \neq 0$$
$$m \neq 8$$

Відповідь: Областю допустимих значень є всі дійсні числа, крім $m=8$.

3) $\frac{a}{a-9} + \frac{a-9}{a}$

Цей вираз містить два дроби. Знаменник кожного з них не повинен дорівнювати нулю.

Для першого дробу: $a-9 \neq 0 \Rightarrow a \neq 9$.

Для другого дробу: $a \neq 0$.

Отже, потрібно виключити обидва значення.

Відповідь: Областю допустимих значень є всі дійсні числа, крім $a=0$ та $a=9$.

4) $\frac{3+c}{c(c-1)}$

Знаменник $c(c-1)$ не повинен дорівнювати нулю. Добуток дорівнює нулю, якщо хоча б один із множників дорівнює нулю. Отже, обидва множники не повинні дорівнювати нулю.

$$c \neq 0 \quad \text{і} \quad c-1 \neq 0$$
$$c \neq 1$$

Відповідь: Областю допустимих значень є всі дійсні числа, крім $c=0$ та $c=1$.

реклама