ГДЗ з алгебри 8 клас Істер, вправа №3.19

Розв'язання до підручника «Алгебра» для 8 класу.
Автор: О. С. Істер.
Умова вправи № 3.19
Подайте дріб у вигляді суми або різниці цілого виразу і дробу:
1) $\frac{m+3}{m}$; 2) $\frac{a^4+a^3-5}{a^2}$;
3) $\frac{x^2+5x-3}{x+5}$; 4) $\frac{4a-4b+7}{a-b}$.
Розв'язок вправи № 3.19
Короткий розв'язок
1) $\frac{m}{m}+\frac{3}{m} = 1+\frac{3}{m}$
2) $\frac{a^4}{a^2}+\frac{a^3}{a^2}-\frac{5}{a^2} = a^2+a-\frac{5}{a^2}$
3) $\frac{x(x+5)-3}{x+5} = x-\frac{3}{x+5}$
4) $\frac{4(a-b)+7}{a-b} = 4+\frac{7}{a-b}$
Детальний розв'язок з поясненнями
Ключ до розв'язання: щоб подати дріб у вигляді суми або різниці, можна розділити чисельник на знаменник почленно, якщо це можливо, або виділити в чисельнику вираз, який дорівнює знаменнику.
1) $\frac{m+3}{m} = \frac{m}{m}+\frac{3}{m} = 1+\frac{3}{m}$
2) $\frac{a^4+a^3-5}{a^2} = \frac{a^4}{a^2}+\frac{a^3}{a^2}-\frac{5}{a^2} = a^2+a-\frac{5}{a^2}$
3) $\frac{x^2+5x-3}{x+5} = \frac{x(x+5)-3}{x+5} = \frac{x(x+5)}{x+5} - \frac{3}{x+5} = x-\frac{3}{x+5}$
4) $\frac{4a-4b+7}{a-b} = \frac{4(a-b)+7}{a-b} = \frac{4(a-b)}{a-b} + \frac{7}{a-b} = 4+\frac{7}{a-b}$